DIELECTRIC PROPERTIES OF A PARAELECTRIC MATERIA

Vol. 10,

$$H_{t} = K + V_{c}^{(2)} + \frac{1}{2} \sum_{\substack{\alpha\beta \\ l \ k' \\ k \ k'}} u_{\alpha}\binom{l}{k} \widetilde{\phi}_{\alpha\beta}\binom{l \ l'}{kk'} u_{\beta}\binom{l'}{k'}.$$
(3)

K denotes the kinetic energy operator for the ions and $V_c^{(2)}$ is the harmonic dipolar interaction. The last term in (3) is a nearest neighbor short range interaction with force constants $\hat{\phi}$ which are to be determined variationally. The lattice cells are labeled by l and l', the type of ion by k and k', and the Cartesian indices by α and β . The model Hamiltonian H includes anharmonicity through a longitudinal short range interaction up to fourth order in the ion displacements.

$$H = K + V_{o}^{(2)} + \frac{1}{2} \sum \{\phi_{L}^{(2)} (\delta u_{x})^{2} + \phi_{T}^{(2)} [(\delta u_{y})^{2} + (\delta u_{z})^{2}]\} + \sum \phi_{L}^{(3)} (\delta u_{x})^{3} + \sum \phi_{L}^{(4)} (\delta u_{x})^{4}.$$
(4)

The summations in (4) denote a sum over all lattice cells together with a six-fold sum over the octahedral environment of nearest neighbor ions, with the relative displacement between nearest neighbor A and B ion pairs being denoted by δu_a . The local stability of the undistorted structure permits the tangential component of the harmonic short range interaction to be eliminated in terms of the static Coulombic energy per particle $V_c^{(0)}$. Indeed,

$$\phi_T^{(2)} = \frac{1}{3} (V_c^{(0)}/N).$$

The extension of the calculations to I to include strain is straightforward. ⁷ In (4) we merely make the replacement

$$u_{\alpha} \begin{pmatrix} l \\ k \end{pmatrix} \rightarrow u_{\alpha} \begin{pmatrix} l \\ k \end{pmatrix} + \sum_{\beta} \mathcal{E}_{\alpha\beta} X_{\beta}^{\circ} \begin{pmatrix} l \\ k \end{pmatrix},$$

where $X_{\beta}^{o}\binom{l}{k}$ is a lattice vector of the unstrained lattice and $\tilde{\mathcal{E}}_{\alpha\beta}$ is the symmetric strain tensor appropriate to a homogeneous deformation. The trial free energy F_t , including strain, is easily evaluated. To obtain the self-consistent equations in the presence of a finite external pressure, we minimize the Gibbs free energy $G = F_t + PV$ with respect to $\tilde{\mathcal{E}}_{\alpha\beta}$ and the variational parameters $\tilde{\phi}$. The self-consistent determination of $\tilde{\mathcal{E}}_{\alpha\beta}$ and ϕ results from the coupled solutions of the equations

$$\frac{\partial G}{\partial \mathcal{E}_{\alpha\beta}} = 0, \quad \frac{\partial G}{\partial \bar{\phi}_{\alpha\beta}} \begin{pmatrix} l l' \\ k k' \end{pmatrix} = 0.$$

FIG. 1. Plot of the squared transverse optic mode frequency vs. temperature for different pressures. The arrows indicate the temperature T_1 below which the static dielectric constant deviates from a Curie-Weiss law. Squared frequencies are expressed in units of $\omega^{-2} = M_R^{-1} [2\pi (Z*e)^2/r_0^3]$, where M_R is the reduced mass of the ions, Z^* is the effective ionic charge, and r_0 is the nearest neighbor distance. Temperature is measured in units of $(\hbar\omega/K_B)$ and pressure in units of Ry per unit cell volume.

The solution we are interested in corresponds to a uniform compression or expansion, so that $\mathcal{E}_{\alpha\alpha} = \mathcal{E}$ and $\mathcal{E}_{\alpha\neq\beta} = 0$.

In Fig. 1 the squared zone center TO mode frequency is plotted as a function of temperature at various pressures - the reduced units introduced in I are used throughout. With units appropriate to KTaO3, the maximum temperature in Fig. 1 corresponds to \sim 400K and the maximum pressure to ~40 kbar. The most important qualitative feature of the plots in Fig. 1 is the fact that the temperature T_1 at which $\omega_{TO}^{2}(\Gamma)$ deviates from a linear temperature dependence increases with pressure. This mirrors the behavior observed by Abel in his measurements of ϵ^{-1} as a function of pressure and temperature. In view of the results of I, this behavior is to be expected. Indeed, in I we pointed out that the degree to which the linear temperature dependence of $\omega_{TO}^{2}(\Gamma)$ extends into the low temperature regime depends critically on the density of long wavelength 'soft' modes with

888