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K denotes the kinetic energy operator for the ions 
and Ve(2) is the harmonic dipola r interaction. The 
last term in (3) is a. nearest neighbor shorl range 
interaction with force cons tants 1> which are to be 
determined variationally . The lattice cells are 
labeled by I and /', th l:! type of ion by k and k', 

and th~ Cartesian indices by a and f3. The mod el 
Hamiltonian H includes anharmonicity through a 
longitudinal short range interaction up to fourth 
order in the ion displacements. 
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The summations in (4) denote a sum over all 
lattice cells together wirh a six-fold sum over the 
octahedral environment of nearest neighbor ions, 
with the relative displacement between nearest 
neighbor A and 8 ion pairs being denoted by 
oUa' The local stability of th~ undistorted struc­
ture permits the tangential component of the har­
monic short range interaction to be eliminated in 
terms of the static Coulombic energy per particle 
V;O) . Indeed, 

The extension of the calculations to I to include 
strain is straightforward. 7 In (4) we merely make 
the replacement 

Ua (1) -+ U a (i) + L 00{3 xfi (i) , 
f3 

where Xfi(i) is a lattice vector of the unstrained 
lattice and 0af3 is the symmetric strain tensor 
appropriate to a homogeneous deformation. The 
trial free energy R- , including strain , is easily 
evaluated. To obtain the self-consistent equations 
in the presence of a finite external pressure, we 
minimize the Gibbs free energy G = R- + PV with 
respect to 0af3 and the variational parameters ~. 
The self-consistent determination of ~ and ¢ 
results from the coupled solutions of the equations 
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FIG.1. Plot of the squared transverse optic mode 
frequency vs. temperature for different pressures. 
Th~ arrows indicate the temperature T, below . 
which the static dielectric constant deviates from 
a Curie-Weiss law. Squared frequencies are ex­
pressed in units of w- 2 = M:' [277(Z* e)2/r&J , where 
MR is the reduced mass of 'fl1e ions, Z* is the 
effective ionic charge, and To is the neares t 
neighbor distance. Temperature is measured in 
units of (nwl KB ) and pressure in units of Ry per 
unit c~ll volume. 

The solution we are interested in corresponds to 
a uniform compression or expansion, so that 
0aa. = 0 and 0 a {.f3= O. 

In Fig. 1 the squared zone center TO mode 
freque ncy is plotted as a function of temperature 
at various pressures - the reduced units intro­
duced in I are used throughout. With units appro­
priate to KTa03 , the maximum temperature in Fig. 
1 corresponds to rv 400K and the maximum pressure 
to ---AO kbar. The most important qualitativ e feature 
of the plots in Fig. 1 is the fact that the tempera­
ture 1; at which WT~([') deviates from a linear 
temperature dependence increases with pressure. 
This mirrors the behavior observed by Abel in his 
measurements of E-' as a function of pressure 
and temperature. In view of the results of I, this 
behavior is to ])e ~~xpected. Indeed, in I we 
pointed out that the degree to which the linea r 
temperautre dependence of WT~(r) extends into 
the low temperature regime depends critically on 
the density of long wavelength 'soft' modes with 


