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K denotes the kinetic energy operator for the ions
and V,? is the harmonic dipolar interaction. The
last term in (3) is a.nearest neighbor short range
interaction with force constants ¢ which are to be
determined variationally. The lattice cells are
labeled by ! and !’, the type of ion by k and k',
and the Cartesian indices by a and 8. The model
Hamiltonian H includes anharmonicity through a
longitudinal short range interaction up to fourth
order in the ion displacements.
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The summations in (4) denote a sum over all
lattice cells together wirh a six-fold sum over the
octahedral environment of nearest neighbor ions,
with the relative displacement between nearest
neighbor A and B ion pairs being denoted by
Ou,. The local stability of the undistorted struc-
ture permits the tangential component of the har-
monic short range interaction to be eliminated in
terms of the static Coulombic energy per particle
V%, Indeed,
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The extension of the calculations to I to include
strain is straightforward. ” In (4) we merely make
the replacement

ua(}) - ua<i)+§ Eap X3 (1),

where X,%(,lc) is a lattice vector of the unstrained
lattice and 5q3 is the symmetric strain tensor
appropriate to a homogeneous deformation. The
trial free energy F, , including strain, is easily
evaluated. To obtain the self-consistent equations
. in the presence of a finite external pressure, we
minimize the Gibbs free energy G = F, + PV with
respect to 5,,;; and the variational parameters ¢.
The self-consistent determination of @ap and ¢
results from the coupled solutions of the equations
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F1G. 1. Plot of the squared transverse optic mode
frequency vs. temperature for different pressures.
The arrows indicate the temperature T, below
which the static dielectric constant deviates from
a Curie—Weiss law. Squared frequencies are ex-
pressed in units of w-2= M [277(Zxe)?/r3] , where
M, is the reduced mass of the ions, Z¥ is the
e?fective ionic charge, and r, is the nearest
neighbor distance. Temperature is measured in
units of (iww/Ky) and pressure in units of Ry per
unit cell volume,

The solution we are interested in corresponds to
a uniform compression or expansion, so that

gm= é and ga£ﬁ= 0.

In Fig. 1 the squared zone center TO mode
frequency is plotted as a function of temperature
at various pressures — the reduced units intro-
duced in I are used throughout. With units appro-
priate to KTaO;, the maximum temperature in Fig.
1 corresponds to ~400K and the maximum pressure
to ~40 kbar., The most important qualitative feature
of the plots in Fig. 1 is the fact that the tempera-
ture 7T, at which @ 2(I") deviates from a linear
temperature dependence increases with pressure,
This mirrors the behavior observed by Abel in his
measurements of €' as a function of pressure .
and temperature. In view of the results of I, this
behavior is to e axpected. Indeed, in I we
pointed out that the degree to which the linear
temperautre dependence of wy(I") extends into
the low temperature regime depends critically on
the density of long wavelength ‘soft’ modes with




